


Abstract— Multi-access Edge Computing (MEC)

technology outsources the cloud services at the edge of the

mobile network for delay-sensitive, bandwidth hungry

applications. The technology addresses the requirements

of mission critical communications for ultralow latency

and high reliability in a sustainable and affordable way.

The paper studies MEC capabilities to handle mission

critical calls exposing the network functions for traffic

gating and rerouting. Following the RESTful approach to

define MEC services, information flows, interfaces with

data model and data format are presented. The injected

latency by the service is theoretically evaluated.1

Keywords—5G, Multi-access Edge Computing,

Application Programming Interfaces, state models, bi-

simulation, latency.

I. INTRODUCTION
ISSION critical communications are required when
human life or any kind of critical infrastructure are at
risk, and timely and reliable reaction is of great

importance to avoid or mitigate the damages [1], [2]. Voice
mission critical services offer functionality for engagement in a
call of two or more users, group management, private calls
between pairs of users, floor control, etc. The recent fifth
generation (5G) mobile networks address the requirements of
mission critical communications by offering high availability
and flexibility, prioritization of users related to public safety,
prioritization of traffic classes, and management of extreme
conditions when the network is congested [3], [4]. In [5], the
authors present and evaluate 5G architecture that enables
mission critical applications. The vision and challenges of
mission critical data communications and the 5G enabling
technologies is provided in [6]. Possible strategies to achieve
reliable and delay optimized mission critical networks are
discussed in [7]. Approaches for mission critical communica-
tions aimed at search and rescue operations which are based on
unmanned aerial vehicles are proposed in [8], [9]. In [10], the
authors argue that shared access and network slicing enable
support of mission critical applications. In [11], the authors

The research is funded by Bulgarian Science Fund, grant KP-06-H37/18

propose an approach to provide mission-critical messaging
services using MEC technology.

Mission Critical Push To Talk (MCPTT) service provides
half duplex communication service with enhanced features
suitable for mission critical scenarios. It enables establishment,
maintenance and termination of communication path(s) among
users, call management, monitoring on activity of separate
sub-calls, and a mechanism to arbitrate between multiple
simultaneous requests. The service is targeted at transport
companies, fire brigades, police, ambulance as well as
industrial and nuclear plants.

In this paper, we propose an approach to deploy mission
critical voice applications at the 5G network edge. The
approach enables programmability of mission critical voice
services and does not require deployment of IMS (Internet
Protocol Multimedia Subsystem) platform. The approach is
based on REpresentational State Transfer (REST) architectural
style, and defines the related resources, data model and
supported interfaces. The feasibility study illustrates the
approach practicality. The service processing time is assessed
theoretically.

II. MISSION CRITICAL VOICE COMMUNICATIONS AT THE EDGE
The MCPTT service enables users to gain access to the

permission to talk by arbitrated manner and supports private
calls between users in a group. Requirements of MCPTT
service and service architecture are described in 3GPP TS
23.379, while the signaling procedures and protocols are
defined in 3GPP TS 24.379. Both specifications require
deployment of MCPTT service over IMS which is optimized
to provide all types of multimedia services using internet
protocols. The IMS functionality as a part of the core network
ensures proper establishment and management of bearers for
emergency sessions.

MCPTT service can be based on distributed cloud
architecture at the network edge. The Multi-access Edge
Computing (MEC) which is a key component of 5G networks
addresses the requirements for resiliency and low latency and
can further improve the MCPTT service performance. By
outsourcing cloud capabilities at the edge of the mobile
network, MEC enables session continuity, distributed
transaction management and offloading the mobile device
workload. MEC-based application traffic does not need to

Cloud Based Mission Critical Calls at the Edge

Received: March 1, 2020. Revised: July 1, 2020. Accepted: July 7, 2020. Published: July 9, 2020.

I. Atanasov, E. Pencheva, A. Nametkov
Technical University of Sofia

Bulgaria

M

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING
DOI: 10.46300/9106.2020.14.40 Volume 14, 2020

ISSN: 1998-4464 282

travel between mobile devices and the cloud to be processed,
which reduces the round-trip time. A hierarchical distributed
MCPTT architecture which is based on IMS and MEC is
suggested in [12].

The Key Performance Indicators (KPIs) of MCPTT service
are defined in 3GPP TS 22.179. End-to-end access time is one
of the most important criteria which is defined as the time
between the user request to speak and the user gets a signal to
start speaking. It includes IMS signaling procedures which
introduce significant overhead. An analysis on impact of 5G
network on MCPTT service KPIs is provided in [13].

In this paper, we propose MEC-based call control service
which does not require IMS deployment. Our proposal
eliminates the necessity of IMS signaling and uses the open
access to distributed core functionality. Due to reduced
signaling for session establishment the access time is
significantly reduced. The proposed approach to mission
critical call control is beneficial in cases of backhaul
connection loss as the call related signaling is isolated at the
edge.

Next sections describe the proposed call control
functionality by typical use case, data types and information
exchanged, the resource methods, state models and their
formal verification.

III. DESCRIPTION OF THE PROPOSED FUNCTIONALITY
The proposed functionality for mission critical voice

services can be provided as a mobile edge service by co-
location of the MEC platform and distributed core network.
The MEC deployment with distributed core functionality
enables superior quality of experience and performance for
mission critical scenarios [14]. With the service-based
architecture of the core network, network functions are
provided as services and can be virtualized. This architecture
is aligned with the principles of MEC Application
Programming Interfaces (APIs) framework. The MEC API
framework provides the necessary functionality for mobile
edge service registration, discovery, authentication, and
authorization, which is also required for core network services.
Mobile edge applications can be run on the same virtualized
platform as the core network services which reduces the costs.
The deployment of distributed core network components
serves well mission critical communications as the communi-
cation with the operators centralized core is not necessary. The
solution enables local management, offloading of the entire
traffic, and provisioning of customized quality of service.

The mobile edge platform and applications can access core
network functionality through Network Exposure Function
(NEF) [15]. 5G NEF enables MEC functional entities to
subscribe to relevant events and to be notified on event
occurrence. It also allows mobile edge applications to
provision prognostics about user mobility and activity to
optimize network performance, as well as to handle quality of
service based on policies.

We propose a new mobile edge service named Call
Handling service which enables mobile edge applications to
handle calls initiated by mobile subscribers. A mobile edge
application notified about a call related event can determine
how the call should be treated. It is possible for the mobile
edge application to request call re-routing, call ending
(termination), or call continue. The proposed mobile edge
service is activated as a result of event in the network and the
mobile edge application can indicate the call treatment prior
the call establishment.

More specifically, the proposed mobile edge Call Handling
service provides a mechanism for mobile edge applications to
specify how calls should be handled for a specific number.
Call handling instructions include the following:
 Call accepting – accepting calls from numbers which are

not in a blacklist, i.e. completing the call to the original
called party address.

 Call blocking – blocking calls from numbers that are in a
blacklist, i.e. rejecting the call.

 Unconditional call forwarding – changing the called party
address, i.e. the called number is changed to the
forwarding number.

 Conditional call forwarding – changing the destination
address of the call based on the state of the called party
(busy, unreachable, no answer).

 Play audio - initiating audio with the calling party (e.g.
playing an announcement), i.e. the call is handled by a
voice system.

 Call transferring – transferring the voice call to another
party, i.e. the call is transferred to another party during its
active phase.

A typical mission critical scenario is a call to a certain
service number. The service number is used to connect the
calling subscriber to e.g. a Public Safety Agency. A dedicated
mobile edge application being notified about the call may
redirect the call to the appropriate personal based on e.g.
location, time, availability etc. In alternative scenario, the
mobile edge application may route the call to media server to
play a message to the caller.

Fig.1 illustrates the flow for the call handling by a mobile
edge application. As a pre-condition for call handling, the
mobile edge application needs to have active subscription for
call related events.
1. Using Call Handling API, the mobile edge application

requests to subscribe for notifications about call related
events.

2-3. The Call Handling service invokes the Nnef_EventEx-
posure service of NEF, which provides support for
event exposure, to create subscription.

4. The mobile edge application is notified about accepted
subscription.

5. The user makes a call to the service number.
6-7. The NEF invokes the Nnef_EventExposure service to

notify the Call Handling service about the event.
8-9. The application is also notified about the call event.

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING
DOI: 10.46300/9106.2020.14.40 Volume 14, 2020

ISSN: 1998-4464 283

10. The application decides to redirect the call and requests
the call redirection to specific address.

11-12. The Call Handling service invokes Nnef_Traffic-
Influence service of NEF, which provides the ability to
affect the traffic routing.

13. The call is redirected in the network.
14-15. The NEF invokes the Nnef_TrafficInfluence service to

notify the Call Handling service about call redirection.
16. The application request for call redirection is

acknowledged.

Fig.1 A mobile edge application having active subscription for call
events, requests call redirection upon notification

IV. DATA MODEL AND API DEFINITION
REST is architectural style for distributed applications. It

takes a resource-based approach for interactions where
resources represent entities (physical or logical). The resource
identification is performed by its URI (Uniform Resource
Identifier) which enables a global addressing scheme for
resources and service discovery. Resources are decoupled
from their representation and their content may be described in
different format such as JSON, XML etc. each resource has a
state which can be acted upon by four simple operations:
create (HTTP POST), retrieve (HTTP GET), update (HTTP
PUT) and delete (HTTP DELETE). Due to its properties like

scalability, performance, and modularity REST is desirable in
web service design [16].

Following the REST architectural style, all objects of the
proposed Call Handling service are represented as resources
organized in a tree structure. All resource URIs follow a
common root that can be discovered using service discovery.

Fig.2 shows the resource structure of the proposed Call
Handling mobile edge service.

The callHandlingRequests resource contains all requests for
call handling. It supports GET method which retrieves a list of
all request for call handling. The routingRequests resource is a
container resource for all requests to (re-)route calls to address
indicated by a mobile edge application. It supports POST
method which creates a new resource representing a request
for call (re-) routing and GET method which retrieves the list
of all requests to (re-)route calls.

Fig.2 Resource structure of Call Handling service

When a mobile edge application wants to (re-)route the call
to a specific address it sends a POST request to the
routingRequests resource with message body containing the
routingInfo data structure. The routingInfo data type describes
the information about call routing and it is a structure of
routingAddress (the address to which the call has to be (re-
)routed), mediaInfo describing the media types to be used in
each direction, the callingUser (the URI of the caller), and
application instance ID and request ID. The Call Handling
service answers with 201 Created response.

The routingRequestID resource represents an existing
request for call (re-)routing. It supports GET method which
retrieves information about the given request.

The transitRequests resource contains all requests to handle
the call as transit e.g. to continue the call without any changes.
It supports POST method which creates a new resource
representing a request to continue with normal call handling
and GET method which retrieves the list of all requests to
handle the call as transit.

/{apiRoot}/ch/v1

/callHandlingRequests

/routingRequests

/subscriptions

/{subscriptionID}

/{routingRequestID}

/transitRequests

/{transitRequestID}

/endCallRequests

/{endCallRequestID}

NEF The rest core

functions

Distributed Core

Radio

Access

Network

1. Subscribe for call event notifications request

2. Nnef_EventExposure_Subscribe_Req

5. The user dials a service number

10. Redirect call request

11. Nnef_TrafficInfluence_Create_Req

13. The call is redirected

14. Nnef_TrafficInfluence_Notify_Req

15. Nnef_TrafficInfluence_Notify_Res

16. Redirect call response

Mobile Edge Server

Mobile

Edge App
Call Handling

Service

3. Nnef_EventExposure_Subscribe_Res

6. Nnef_EventExposure_Notify_Req

8. Notify call event request

7. Nnef_EventExposure_Notify_Res

4. Subscribe for call event notifications response

9. Notify call event response

12. Nnef_TrafficInfluence_Create_Res

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING
DOI: 10.46300/9106.2020.14.40 Volume 14, 2020

ISSN: 1998-4464 284

The transitRequestID resource represents an existing request
for handling calls as transit. The supported method is GET
which retrieves information about specified request.

The endCallRequets resource contains all requests to end
the call which results in call termination in the network. The
caller may receive an announcement. It supports POST method
which creates a new resource representing a request to end the
call and GET method which retrieves the list of all requests to
end the call. When a mobile edge application decides to end
the call, it sends a POST request to the endCallRequets
resource with message body containing the endCallInfo data
structure. The endCallInfo data type describes the information
about the call ending and it is a structure of callingUser
address, the URI indicating the location of the announcement
to be played, the application ID and the request ID. The
mobile edge Call handling service responds with 201 Created
message.

The callEndRequestID resource represents an existing
request to end the call and it supports GET method.

The subscriptions resource represents all subscriptions for
notifications about call related events. It supports GET method
which retrieves a list of all subscriptions and POST method
which creates a new subscription. When a mobile edge
application wants to create a new subscription, it sends a
POST request to the subscriptions resource with message body
containing eventSubscriptionInfo data structure. The
eventSubscriptionInfo data type represents information about
subscription to call related events. It is a structure of callback-
Address, subscriptionID, filterCriteria and expiryDeadline,
where: callbackAddress is URI selected by the mobile edge
application to receive notifications; subscriptionID is URI
used for subscription identifier; filterCriteria is a structure of
eventType which defines one or call events of interest (called
number, no answer, busy, not reachable), application ID,
optionally the called user address; expiryDeadline is time
stamp indicating the expiry of the subscription. The accepted
subscription is acknowledged by 200 OK response.

The subscriptionID resource represents an existing
subscription for call events. The resource supports GET
method, PUT method to update an existing subscription, and
DELETE method to terminate an existing subscription.

Upon occurrence of call event of interest in the network, the
Call Handling mobile edge service sends a POST request to
the callback URI provided by the mobile edge application to
be notified about the call event. The request body contains
eventNotificationInfo data structure indicating the event, the
calling user address, and the called user address. The
application responds with 200 No Content message which just
acknowledges the receipt of notification. After notification, the
application uses a POST method to the respective resource to
send instructions for call handling (e.g. to the routingRequests
resource for call routing, to the transitRequests resource for
call continuing, and to the endCallRequets resource for call
ending) as described above.

V. SERVICE API FEASIBILITY STUDY
To assess the practicability of the proposed Call Handling

API, we model the call state from network and application
points of view. Both state models must expose equivalent
behavior i.e. their views on the call state must be
synchronized.

The mobile edge application may be triggered on calls to
specific service number, or based on the called party state
(busy, no answer, unreachable) or user location change. The
events on which the application is triggered are regarded as
detection points.

Fig.3 shows the simplified outgoing call state model
supported by the network. From the network point of view, the
call state model exposes well known call states. The proposed
extension of the call state model is the adding of a new state
where upon an event of interest (detection point), instructions
from the mobile edge application are expected.

Fig.3 Call state model supported by the network

The call handling continues according to the received

application instruction. The model is simplified as it does not
consider call abandon from calling party. The semantics of the
model states is as follows.

In Idle state, there is no call. Upon a call attempt to specific
number, the transition to WaitForApp state occurs. In
WaitForApp state, the network waits for instructions from
application how to handle the call. In AnalyzeInformation
state, the dialed number is analyzed to determine the call
routing. In Routing state, the call is routing to is destination. In
case of called party is busy or unreachable, the network waits
for further call handling instructions from application. In
Alerting state, the called party is notified for the incoming call
and an answer is awaited. In case of no answer, the application
is notified, and the networks waits for its instruction. In Active
state, the call is answered, and the communication is ongoing.
The calling party may change her/his position and being
notified, the application may provide instructions for call
handling.

Idle

WaitForApp

answer

Routing

Alerting

Active

disconnect

analyzedInfo

terminationSeized

Analyze Information

setupDP/
dialedNumber

routeReq/
routeRes

continueReq/
continueRes

setup endCallReq/
endCallRes

noAnswerDP

busyDP,
unreachableDP

busy,
unreachable

noAnswer

locationChangeDP

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING
DOI: 10.46300/9106.2020.14.40 Volume 14, 2020

ISSN: 1998-4464 285

 Fig.4 shows the simplified call state model supported by the
mobile edge application.

Fig.4 Call state model supported by the application

The call state model is simple as the application can only
request the call handling prior to the call being setup and
cannot keep control over the call after event handling. In Null
state, the application is not activated. The application is
activated upon notification about special number dialling,
called party busy, called party unreachable, called party does
not answer, and change of position. Each event handling is
done separately. In CallHandling state, the application waits
for the result of its instructions in the network.

Both models are formally described and verified using the
concepts of Labeled Transition Systems (LTS) and weak bi-
simulation. Both concepts are widely applicable for formal
model verification [17].

The outgoing call state model supported by the network is
formally described by Tn

 = (Sn, Actn, n, s0
n), where

- Sn
 = {Idle [s1

n], WaitForApp [s2
n], AnalyzeInformation

[s3
n], Routing [s4

n], Alerting [s5
n], Active [s6

n]};
- Actn = {setup [t1

n], setupDP [t2
n], endCallReq[t3

n],
continueReq [t4

n], routeReq [t5
n], analyzeInfo [t6

n], busyDP
[t7

n], unreachableDP [t8
n], busy [t9

n], unreachable [t10
n],

teminationSeized [t11
n], noAnswerDP [t12

n], noAnswer[t13
n],

answer [t14
n], disconnect [t15

n], locationChangeDP [t16
n]};

- n = {(s1
n t1

n
 s3

n), (s1
n t2

n
 s2

n), (s2
n t3

n
 s1

n), (s2
n t4

n
 s3

n), (s3
n

t6
n

 s4
n), (s2

n t5
n
 s4

n), (s4
n t7

n
 s2

n), (s4
n t8

n
 s2

n), (s4
n t9

n
 s1

n), (s4
n t10

n

s1
n), (s4

n t11
n
 s5

n), (s5
n t12

n
 s2

n), (s5
n t13

n
 s1

n), (s5
n t14

n
 s6

n), (s6
n t15

n

s1
n), (s6

n t16
n
 s2

n), };
- s0

n = {s1
n}.

Short notations are given in brackets.
The call state model supported by the application is

formally described as Ta
 = (Sa, Acta, a, s0

a), where:
- Sa

 = {Null [s1
a], CallHandling [s2

a]};
- Acta = {numberDialed [t1

a], continueRes [t2
a], routeRes

[t3
a], endCallRes [t4

a], calledBusy [t5
a], calledUnreachable [t6

a],
calledNotAnswer [t7

a], callingChangeLocation [t8
a]};

- a = {(s1
a t1

a
 s2

a), (s2
a t2

a
 s1

a), (s2
a t3

a
 s1

a), (s2
a t4

a
 s1

a), (s2
a t8

a

s1
a), (s1

a t5
a
 s2

a), (s1
a t6

a
 s2

a), (s1
a t7

a
 s2

a), (s1
a t8

a
 s2

a)};
- s0

a = {s1
a}.

Strong bi-simulation requires strict mapping of both LTSs
transitions. In weak bi-simulation, internal transitions in one
LTS, which are invisible in the other LTS, can be skipped.

Proposition: Tn and Ta are weakly bi-similar and expose
equivalent behavior.

Proof: Let R ⊆ (Sn x Sa) where R = {(s1
n, s1

a), (s2
n, s2

a)}.
Then the following mapping between transitions of Ta

 and Tn

can be identified:
1. The application is triggered in case of a call to a specified

service number. Upon a call request the network notifies the
application: For (s1

n t2
n
 s2

n)  (s1
a t1

a
 s2

a).
2. The application, which is triggered upon a call to a

specified service number, sends an instruction to end the call:
For (s2

a t4
a
 s1

a)  (s2
n t3

n
 s1

n).
3. The application, which is triggered upon a call to a

specified service number, sends an instruction to continue the
call (to handle the call as transit). The network continues with
call setup and the called party may answer the call, or may not
answer, or may be busy, or may be unreachable: For (s2

a t3
a
 s1

a)
 {(s2

n t4
n
 s3

n)⊓ (s3
n t6

n
 s4

n)⊓(s4
n t11

n
 s5

n)⊓(s5
n t14

n
 s6

n)⊓(s6
n t15

n

s1
n)}⊔{(s2

n t4
n
 s3

n)⊓(s3
n t6

n
 s4

n)⊓(s4
n t11

n
 s5

n)⊓(s5
n t13

n
 s1

n)}⊔

{(s2
n t4

n
 s3

n)⊓(s3
n t6

n
 s4

n)⊓(s4
n t9

n
 s1

n)}⊔{(s2
n t4

n
 s3

n) (s3
n t6

n
 s4

n)
⊓(s4

n t10
n
 s1

n)}.
4. The application, which is triggered upon a call to a

specified service number, sends an instruction to route the call
to the indicated address. The network continues with call
setup: For (s2

a t3
a
 s1

a){(s2
n t5

n
 s4

n)⊓(s4
n t11

n
 s5

n)⊓(s5
n t14

n
 s6

n)
⊓(s6

n t15
n
 s1

n)}⊔{(s2
n t5

n
 s4

n)⊓(s4
n t11

n
 s5

n)⊓(s5
n t13

n
 s1

n)} ⊔{(s2
n

t5
n
 s4

n)⊓(s4
n t9

n
 s1

n)}⊔{(s2
n t5

n
 s4

n)⊓(s3
n t6

n
 s4

n) ⊓ (s4
n t10

n
 s1

n)}.
5. The application, which is triggered upon a call to a

specified service number, sends an instruction to end the call.
The network terminates the call: for (s2

a t4
a
 s1

a)  (s2
n t3

n
 s1

n).
6. The application is triggered in case the called party is

busy. Upon a call request the network analyses the dialed
number, routes the call to the called party, and notifies the
application that the called party is busy: For (s1

a t5
a
 s2

a) {(s1
n

t1
n
 s3

n)⊓(s3
n t6

n
 s4

n)⊓(s4
n t7

n
 s2

n)}.
7. The application, which is triggered in case the called

party is busy, sends instructions to reroute the call: For (s2
a t3

a

s1
a) {(s2

n t5
n
 s4

n)⊓(s4
n t11

n
 s5

n)⊓(s5
n t14

n
 s6

n)⊓(s6
n t15

n
 s1

n)}
8. The application, which is triggered in case the called

party is busy, sends instructions to end the call: For (s2
a t4

a
 s1

a)
(s2

n t3
n
 s1

n).
9. The application is triggered in case the called party is

unreachable. Upon a call request the network analyses the
dialed number, routes the call to the called party, and notifies
the application that the called party is unreachable: For (s1

a t6
a

s2
a) {(s1

n t1
n
 s3

n)⊓(s3
n t6

n
 s4

n)⊓(s4
n t8

n
 s2

n)}.
10. The application, which is triggered in case the called

party is unreachable, sends instructions to reroute the call: For
(s2

a t3
a
 s1

a){(s2
n t5

n
 s4

n)⊓(s4
n t11

n
 s5

n)⊓(s5
n t14

n
 s6

n)⊓(s6
n t15

n

s1
n)}.
11. The application, which is triggered in case the called

party is unreachable, sends instructions to end the call: For (s2
a

t4
a
 s1

a) (s2
n t3

n
 s1

n).
12. The application is triggered in case the called party

does not answer. Upon a call request the network analyses the
dialed number, routes the call to the called party, and notifies
the application that the called party does not answer: (s1

a t7
a
 s2

a)
{(s1

n t1
n
 s3

n) ⊓(s3
n t6

n
 s4

n) ⊓(s4
n t11

n
 s5

n) ⊓(s5
n t12

n
 s2

n)}.

CallHandling

dialedNumber, calledBusy, calledUnreachable,
calledNotAnswer, callingChangeLocation/ continueReq;
dialedNumber, calledBusy, calledUnreachable,
calledNotAnswer, callingCahngeLocation/ routeReq;
dialedNumber, calledBusy, calledUnreachable,
 calledNotAnswer, callingChangeLocation / endCallReq

Null

continueRes;
routeRes;

endCallRes

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING
DOI: 10.46300/9106.2020.14.40 Volume 14, 2020

ISSN: 1998-4464 286

13. The application, which is triggered when the called
party does not answer sends an instruction to end the call. The
network ends the call. For (s2

a t4
a
 s1

a)  (s2
n t3

n
 s1

n).
14. The application, which is triggered when the called

party does not answer, sends an instruction to reroute the call
to another destination address. The network reroutes the call.
For (s2

a t3
a
 s1

a) {(s2
n t5

n
 s4

n) (s4
n t11

n
 s5

n)⊓(s5
n t14

n
 s6

n)⊓(s6
n t15

n

s1
n)}.
15. The application is triggered when the calling party

changes her/his position during the conversation. For (s1
a t8

a

s2
a) { (s3

n t6
n
 s4

n)⊓(s4
n t11

n
 s5

n)⊓(s5
n t14

n
 s6

n)⊓(s6
n t16

n
 s2

n)}.
16. The application, which is triggered upon change of

position, sends instructions to transfer the call to another
destination address (i.e. to reroute the call). For (s2

a t3
a
 s1

a) 
{(s2

n t5
n
 s4

n)⊓(s4
n t11

n
 s5

n)⊓(s5
n t14

n
 s6

n)⊓(s6
n t15

n
 s1

n)}
17. The application, which is triggered upon change of

position, sends instructions to end the call. For (s2
a t4

a
 s1

a) (s2
n

t3
n

 s1
n).

 Therefore, Tn and Ta are weakly bi-similar. ■
 The bi-simulation is used in system verification and

validation. Along with the other approaches, it contributes to
increasing software reliability [17].

VI. ESTIMATION OF SERVICE PROCESSING TIME
In [18], the End-To-End (E2E) latency is defined as a

measure for user experience. E2E latency refers to the time
taken for a request generated from a device to go to the
destination, be processed and replied and travel back to the
device [19]. This definition assumes ideal service capabilities
e.g. the E2E latency does not depend on server/device
computational load. Studies on latency measurements on user
plane for MEC-based services are provided in [20], [21]. In
[21], network E2E latency is tested and analyzed, and it is
conducted that MEC can support services with latency greater
than 17 ms.

The control plane latency introduced by the proposed MEC
service can be evaluated as E2E latency, set-up time, service
processing time, and context-update time.

The E2E latency depends on the time required to transmit
packets over the radio interface TR, the time required for
backhaul connection between the access and core network TB,
the core network processing time TC, the time for connection
between the core network and MEC server TT and the service
processing time TS. So, RTT is 2 x (TR+ TB+ TC+TT+TS). The
proposed service deployment assumes MEC server co-location
with distributed core functionality, so the TT is insignificant.
Deployment of distributed core network closer to the edge
further reduces the backhaul latency TB. The Call Handling
service processing time is the time taken by the MEC server to
process the application or network requests and to generate the
respective response. Context-update time must be considered
in case of context-aware applications, such as location-
dependent call handling.

To assess theoretically the service processing time TS, we
evaluate the time required to process the application requests

for call handling and to generate a response based on the call
result in the network.

The HTTP request to reroute the call looks like the
following:

POST /appRootExam/ch/v1/callHandlingRequests/routingReq
uests HTTP/1.1
Host: example.com
Accept: application/json
Content-type: application/json
Content-length: 241

{"actionData":{"actionToEnforce":"route",
"routingAddress":"adf33-12.eerf.bg/bb65",
"mediaInfo":[{"type":"voice","direction":"bidirectional"},{"typ
e":"video","direction":"bidirectional"}],"appID":"2143ABF15",
"requestID: "75EE14-B67-99C"}}

The corresponding HTTP response looks as:

HTTP/1.1 201 Created
Location:/appRootExam/ch/v1/callHandlingRequests/routing
Requests/2233ABF15
Content-type: application/json
Content-length: 241

{"actionData":{"actionToEnforce":"route","routingAddress":"
adf33-12.eerf.bg/bb65",
"mediaInfo":[{"type":"voice","direction":"bidirectional"},{"typ
e":"video","direction":"bidirectional"}],"appID":"2143ABF15",
"requestID: "75EE14-B67-99C"}}

The MEC service processing time TS can be defined as a

product of the input task size (i.e. information block size in
bits), the complexity of the input task which reflects the
necessary CPU cycles per bit, and the MEC's server CPU
frequency. So, the service processing time TS for rerouting a
call, is evaluated using the following parameters: information
size of 6360 bits (406 symbols for the request and 389
symbols for the response); 1000 cycles per bit for complexity;
and CPU frequency at 2.2 GHz, which gives the time budget
of 2.89 ms.

The experimental data in [22] aim an assessment of MEC
latency, where the authors use fiber-wireless access in order to
provide E2E latency measurement setup. To isolate any
application specific processing from the latency assessment in
[22], the experiment is made only using ping, while we add a
summand representing the theoretically evaluated MEC
service processing time. Then, using data of the experiment as
empirical basis, we try to match an appropriate distribution.
The set of candidate distributions for fitting the empirical
cumulative distribution function (ECDF), which is solid-black
in Fig.5, consists of the well-known ones like LogNormal,
Normal, Gamma, and Weibull.

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING
DOI: 10.46300/9106.2020.14.40 Volume 14, 2020

ISSN: 1998-4464 287

Fig.5 Theoretical and empirical and CDFs of RTT as KPI for latency
in call rerouting by MEC application

The capital letters in Fig.5 and here annotate the RTT CDF

(Cumulative Distribution Function) for the Empirical one, for
Weibull (k = 6.446; λ = 3.073), Gamma (α = 82.606; β =
28.421), LogNormal (μ = 1.061; σ = 0.106), and Normal (μ =
2.907; σ = 0.348) respectively.

The comparison of the empirical distribution to the fitted
ones is shown in Table I, where the greater values mean
greater 'mismatch' with respect to the original data. The well-
known statistics like Anderson-Darling, Cramer-von Mises,
and Kolmogorov-Smirnov are abbreviated to capital letters in
Table I.

TABLE I. GOODNESS-OF-FIT STATISTICS

 KS CvM AD

Gamma 0.18921410 9.8152310 55.9899720
LogNormal 0.19362510 8.9214432 50.1021147

Normal 0.22882951 12.0965092 68.1143217
Weibull 0.25267756 19.6115671 103.3287692

The goodness-of-fit statistics are the necessary instrument

when comparing different fits to raw data and come to be base
for the selection procedure of the best fit done. The closest
candidate distribution fit is the LogNormal one as she
has lowest values at all types of statistics.

The resulting distribution might be used when one must
model latency compactly instead of keeping in cache
considerable amount of the original dataset. For example,
when it is needed to estimate the injected latency by the
software component, which is responsible for interface
implementation in the application or service development
process, the developer can draw samples from the statistical
model and thus to follow the respective quality of service
requirements regarding the latency budget.

VII. CONCLUSION
The open access to call handling functionality enables third

party applications deployed at the network edge to determine
flexibly how the calls should be treated. The proposed
functionality enables mission critical applications at the end to
react appropriately in different call scenarios like special
number dialing, no answer, busy, no reachable or change of

position. Based on the specific situation or analytics, the
applications may reroute the call, terminated the call or
transfer the call.

The main benefits of the proposed approach to deploy
mission critical voice applications at the 5G network edge may
be summarized as follows. First, in contrast to MCPTT
service, the proposed mobile edge service provides full duplex
communications and does not require deployment of IMS at
the network edge which reduces signaling. Second, due to
vicinity of end users, many use cases with requirements of low
latency and high reliability may be supported e.g. mission
critical sessions and real-time IoT applications. Third, the
proposed functionality enables mobile edge applications to
react rapidly and flexibly in situation where timely response is
critical. Last, but not least, moving the call handling control at
the edge saves backhaul resources and it is useful in cases
where the backhaul connection is lost as all interactions are
executed locally.

Possible improvements of the proposed approach related to
future work include typical for telecommunications use cases
feedback with the calling party where notifications to the
calling party about application decisions on call handling are
sent. For mission critical voice calls this function is not
mandatory as the aim is to responds as quickly as possible. For
the purposes of mission critical communications, handling of
other media types also may be included such as video, data,
text. Any kind of sensor information e.g. the radiation level,
temperature or smoke may be transferred along with the voice,
so the session handling at the edge may also be useful.

References
[1] N. A. Mohammed, A. M. Mansoor and R. B. Ahmad,

"Mission-Critical Machine-Type Communication: An
Overview and Perspectives Towards 5G," in IEEE
Access, vol. 7, pp. 127198-127216, 2019.

[2] H. Wang, Q. Yang, Z. Ding and H. V. Poor, "Secure
Short-Packet Communications for Mission-Critical IoT
Applications," in IEEE Transactions on Wireless
Communications, vol. 18, no. 5, pp. 2565-2578, May
2019.

[3] J. Sachs, G. Wikstrom, T. Dudda, R. Baldemair and K.
Kittichokechai, "5G Radio Network Design for Ultra-
Reliable Low-Latency Communication," in IEEE
Network, vol. 32, no. 2, pp. 24-31, March-April 2018.

[4] K. Williams, M. Assaf, Intelligent Public Transportation,
International Journal of Mathematics and Computers in
Simulation, vol.12, 2018, pp.124-132.

[5] E. Jimeno, J. Pérez-Romero, I. V. Muñoz, B. Blanco, A.
Sanchoyerto and J. F. Hidalgo, "5G Framework for
automated network adaptation in Mission Critical
Services," 2018 IEEE Conference NFV-SDN, Verona,
Italy, 2018, pp. 1-5.

[6] Q. Zhang, F.H.P. Fitzek. Mission Critical IoT
Communication in 5G. In: V. Atanasovski, A. Leon-
Garcia (eds) Future Access Enablers for Ubiquitous
and Intelligent Infrastructures. FABULOUS 2015.

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING
DOI: 10.46300/9106.2020.14.40 Volume 14, 2020

ISSN: 1998-4464 288

Lecture Notes of the Institute for Computer Sciences,
Social Informatics and Telecommunications Enginee-
ring, vol 159. Springer, Cham.

[7] S. Mukherjee and C. Beard, "A framework for ultra-
reliable low latency mission-critical communica-
tion," 2017 Wireless Telecommunications Symposium
(WTS), Chicago, IL, 2017, pp. 1-5.

[8] T. Yang, X. Shen. Mission-Critical Search and Rescue
Networking Based on Multi-agent Cooperative Com-
munication. In: Mission-Critical Application Driven
Intelligent Maritime Networks, 2020 SpringerBriefs in
Computer Science. Springer, Singapore.

[9] A.A.R. Alsaeedy, E.K.P. Chong, 5G and UAVs for
Mission-Critical Communications: Swift Network
Recovery for Search-and-Rescue Operations. Mobile
Netw Appl, 2020.

[10] M. Höyhtyä et al., "Critical Communications Over Mobile
Operators’ Networks: 5G Use Cases Enabled by Licensed
Spectrum Sharing, Network Slicing and QoS Control,"
in IEEE Access, vol. 6, pp. 73572-73582, 2018.

[11] E. Pencheva, I. Atanasov, V. Vladislavov. "Mission
Critical Messaging Using Multi-Access Edge
Computing," Cybernetics and Information Technology,
vol.19, no.4, 2019, pp.73-89.

[12] R. Solozabal, A. Sanchoyerto, E. Atxutegi, B. Blanco, J.
O. Fajardo and F. Liberal, "Exploitation of Mobile Edge
Computing in 5G Distributed Mission-Critical Push-to-
Talk Service Deployment," in IEEE Access, vol. 6, pp.
37665-37675, 2018.

[13] A. Sanchoyerto, R. Solozabal, B. Blanco and F. Liberal,
"Analysis of the Impact of the Evolution Toward 5G
Architectures on Mission Critical Push-to-Talk Services,"
in IEEE Access, vol. 7, pp. 115052-115061, 2019.

[14] F. Giust, et al. "MEC Deployment in 4G and Evaluation
Towards 5G," ETSI white paper no.24, pp.1-24, 2019.

[15] 3GPP TS 29.513 Technical Specification Group Core
Network and Terminals; System Architecture for the 5G
System (5GS), Stage 2, Release 16, v16.3.0, 2019

[16] ETSI GS MEC 009 Mobile Edge Computing (MEC);
General principles for Mobile Edge Service APIs, v1.1.1,
2017.

[17] J. Zhang, Y. Lu, K. Shi, C. Hu, Applying Software
Metrics to RNN for Early Reliability Evaluation,
International Journal of Mathematical Models and
Methods in Applied Sciences, vol.13, 2019, pp. 96-102

[18] NGMN Alliance 5G White Paper version 1.0 (17
February 2015): "NGMN 5G White Paper".

[19] ETSI GS MEC-IEG 006; "Mobile Edge Computing;
Market Acceleration; MEC Metrics Best Practice and
Guidelines, " v1.1.1, 2017

[20] M. Emara, M. Filippou, D. Sabella. "MEC-assisted End-
to-End Latency Evaluations for C-V2X Communications,"
EuCNC'18, Cornell University, arXiv:1802.08027
[eess.SP], 2018, pp.1-5.

[21] J. Zhang, W. Xie, F. Yang and Q. Bi, "Mobile edge
computing and field trial results for 5G low latency
scenario," in China Communications, vol. 13, no.
Supplement2, pp. 174-182, 2016.

[22] J. Liu, G. Shou, Y. Liu, Y. Hu and Z. Guo. "Performance
Evaluation of Integrated Multi-Access Edge Computing
and Fiber-Wireless Access Networks," IEEE Access, vol.
6, pp. 30269-30279, 2018.

Ivaylo Atanasov is born in Sofia, Bulgaria. He has received his
MSc degree in Electronics and PhD degree in Communication
networks from Technical University of Sofia (TU-Sofia). He
has been awarded DSc degree in communication networks in
2016 from the Faculty of Telecommunications, TU-Sofia.
Since 2013, he is Professor and his scientific research area
covers mobile networks, internet communications and
protocols, and mobile applications.

Evelina Pencheva is with the Faculty of Telecommunications,
Technical University of Sofia. She is born in Sofia. She has
received her MSc degree in Mathematics from Sofia
University “St. Kliment Ohridski” and PhD degree in
Communication networks from TU-Sofia. She has defended
her DSc thesis in 2014. Since 2010, she is Professor and her
scientific research area covers multimedia networks,
telecommunication protocols, and service platforms.

Aleksander Nametkov is born in Sofia, Bulgaria in 1989. He
has received the МSc. degree is received at the TU-Sofia in
2015. The area of expertise is in Communication Networks
and Safety Critical Systems. He is currently working on his
PhD thesis (start at 2019) with Faculty of Telecommunica-
tions, TU-Sofia. His research interests include mobile
networks and services, artificial intelligence, and intrusion
detection.

Creative Commons Attribution License 4.0
(Attribution 4.0 International, CC BY 4.0)

This article is published under the terms of the Creative
Commons Attribution License 4.0
https://creativecommons.org/licenses/by/4.0/deed.en_US

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING
DOI: 10.46300/9106.2020.14.40 Volume 14, 2020

ISSN: 1998-4464 289

